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1. Introduction

Polyhedral combinatorics studies combinatorial problems with the help of
polyhedra. Let us first give a simple, illustrative example. Let G =(V, E) be a

graph, and let ¢c: E—>R, be a weight function on the edges of G. Suppose we
want to find a matching M in G with “weight”

(M) =2 ce) (1.1)

eEM
as large as possible, Thus we want to “solve”
max{c(M) | M matching in G} . (1.2)

Denote for any matching M, the incidence vector of M in R® by x", i.e.,
xMe):=1ifec M and :=0 if e 2 M. Considering the weight function ¢: E— R
as a vector in R”, we can write problem (1.2) as

max{c"x" | M matching in G} . (1.3)

This amounts to maximizing a linear function over a finite set of vectors. Hence
we can equally well maximize over the convex hull of these vectors:

max{c"x | x € conv{x" | M matching in G}} . (1.4)
The set
conv{x" | M matching in G} (1.5)

is a polytope in R%, called the matching polytope of G. It follows that there exist
a matrix A and a vector b such that

conv{x" | M matching in G} = {x ER* |x =0, Ax<b} . (1.6)
Then problem (1.4) is equal to
max{c'x|x=0, Ax<b}. (1.7)

In this way we have formulated the original combinatorial‘problem (1.2) as a
linear programming problem. This enables us to apply linear programming
methods to study the original problem. _

The problem at this point is, however, how to find the matrix A and the vector
b. We know that A and b exist, but we must know them in order to apply linear
programming methods. . '

If G is bipartite, it turns out that the matching polytope of G is equal to the set
of all vectors x € R” satisfying

x(e)BO, ec€E (18)
Zx(e)sl, vEV.

edv
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That is, for A we can take the V X E incidence matrix of G and for b the all-one
vector 1 in R”.

It is not difficult to show that the matching polytope for bipartite graphs is
indeed completely determined by (1.8). First note that the matching polytope is
contained in the polytope defined by (1.8), since x" satisfies (1.8) for each
matching M. To see the converse inclusion, we note that if G is bipartite, then the
matrix A is totally unimodular, i.e., each square submatrix of A has determinant
belonging to {0, +1,—1}. This may be seen to imply that the vertices of the
polytope determined by (1.8) are integral vectors, i.e., they belong to Z®. Now
each integral vector satisfying (1.8) must trivially be equal to x“ for some
matching M. Hence the polytope determined by (1.8) is equal to the matching
polytope of G.

For each nonbipartite graph, the matching polytope is not completely de-
termined by (1.8). Indeed, if C is an odd circuit in G, then the vector x € R®
defined by x(e) =1 if e€ C and 0 if e £ C, satisfies (1.8) but does not belong to
the matching polytope.

In fact, it is a pioneering theorem in polyhedral combinatorics due to J.
Edmonds that gives a complete description of the inequalities needed to describe
the matching polytope for arbitrary graphs.

When we have formulated the matching problem as LP problem (1.7), we can
apply LP techniques to study the matching problem. Thus we can find a maximum
weighted matching in a bipartite graph, e.g., with the simplex method. Moreover,
the Duality Theorem of Linear Programming gives

max{c(M) | M matching in G} = max{c'x|x=0, Ax<1)}
=min{y"1]y=0,y"A=c"}. (1.9)

In the special case of G bipartite and ¢ being the all-one vector in R”, we can
derive from this the Konig—Egervdry Theorem. The left-most expression in (1.9)
is equal to the maximum size of a matching. The minimum can be seen to be
attained by an integral vector y, again by the total unimodularity of A. This y is a
{0, 1}-vector in R", and is the incidence vector of some subset W of V intersecting
every edge of G. Thus (1.9) implies that the maximum size of a matching is equal
to the minimum size of a set of vertices intersecting all edges of G.

As an extension, one can derive the Tutte—Berge Formula from the inequality
system given by Edmonds for arbitrary graphs.

Bipartite matching forms an easy example in polyhedral combinatorics. We now
discuss the central idea of polyhedral combinatorics — taking convex hulls—in a
more general framework.

Let # be a collection of subsets of a finite set S, let ¢: S— R, and suppose we
are interested in

max{z c(s)|U 69?} ) (1.10)

seU

(For example, S is the set of edges of a graph, and % is the collection of
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matchings, in which case (1.10) is the maximum “weight” of a matching.)
Usually, & is too large to evaluate each set U in % in order to determine the
maximum (1.10). (For example, the collection of matchings is exponentially large
in the size of the graph.) Now (1.10) is equal to

max{c'}' |U € %}, (1.11)

where " denotes the incidence vector of U in R, i.c., yY(s)=1if s€U and 0
otherwise. [Here we identify functions ¢: §— R with vectors in the linear space
R®, and accordingly we shall sometimes denote c(s) by c,.] Since (1.11) means
maximizing a linear function over a finite set of vectors, we could equally well
maximize over the convex hull of these vectors:

max{c'x|x € conv{x" |U € F}} . (1.12)

Since this convex hull is a polytope, there exist a matrix A and a column vector b
such that

conv{yV|UEF}={xER’|Ax<b)}. (1.13)
Hence (1.12) is equal to
max{c'x| Ax <b} . (1.14)

Thus we have formulated the original combinatorial problem as a linear program-
ming problem, and we can appeal to linear programming methods to study the
combinatorial problem.

In order to determine the maximum (1.10) algorithmically, we could use LP
algorithms like the simplex method or the primal-dual method. Sometimes, with
the ellipsoid method the polynomial-time solvability of (1.10) can be shown.
Moreover, by the Duality Theorem of Linear Programming, problem (1.14), and
hence problem (1.10), is equal to

min{y'b|y=0,y"A=c"}, (1.15)

which gives us a min—max equation for the combinatorial maximum. Often this
provides us with a ‘“good characterization” [i.e., problem (1.10) belongs to
NP Nco-NP], and it enables us to carry out a ‘‘sensitivity analysis” of the
combinatorial problem, etc.

However, in order to apply LP techniques, we should be able to find matrix A
and vector b satisfying (1.13). This is one of the main theoretical problems in
polyhedral combinatorics.

Often, one first “‘guesses” a system Ax <b, and next, one tries to prove that
Ax <b forms a complete description of the polytope. Sometimes, like in bipartite
matching, this can be shown with the help of the total unimodularity of A.
However, in general A is not totally unimodular, and one has to try more
complicated techniques to show that Ax < b completely describes the polytope. In
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this survey, we mention the techniques of “total dual integrality”, “blocking
polyhedra”, “anti-blocking polyhedra”, and ‘““cutting planes’.

In several cases, the guessed system Ax <b turns out not to be a complete
description, but just gives an approximation of the polytope. This can still be
useful, since in that case the linear programming problem max{c'x | Ax <b} gives
a (hopefully good) upper bound for the combinatorial maximum. This can be
very useful in a so-called branch-and-bound algorithm for the combinatorial
problem.

Historically, applying LP techniques to combinatorial problems came along
with the introduction of linear programming in the 1940s and 1950s. Dantzig,
Ford, Fulkerson, Hoffman, Johnson and Kruskal studied problems like the
transportation, flow, and assignment problems, which can be reduced to linear
programming (by the total unimodularity of the constraint matrix), and the
traveling salesman problem, using a rudimentary version of a cutting plane
technique (extended by Gomory to general integer linear programming).

The field of polyhedral combinatorics was extended and deepened considerably
by the work of Edmonds in the 1960s and 1970s. He characterized basic polytopes
like the matching polytope, the arborescence polytope, and the matroid intersec-
tion polytope; he introduced (with Giles) the important concept of total dual
integrality; and he advocated the link between polyhedra, min-max relations,
good characterizations, and polynomial-time solvability. Fulkerson designed the
clarifying framework of blocking and anti-blocking polyhedra, enabling the
deduction of one polyhedral characterization or min—max relation from another.

In this chapter we describe the basic techniques in polyhedral combinatorics,
and we derive as illustrations polyhedral characterizations for some concrete
combinatorial problems. First, in sections 2 and 3, we give some background
information on polyhedra and linear programming methods.

For background and related literature we refer to Grotschel et al. (1988),
Grotschel and Padberg (1985), Griinbaum (1967), Lovasz (1977, 1979), Pul-
leyblank (1983), Schrijver (1983b, 1986), and Stoer and Witzgall (1970).

2. Background information on polyhedra

For an in-depth survey on polyhedra (focusing on the combinatorial properties)
we refer the reader to chapter 18. In this section, we give a brief review on
polyhedra, covering those parts of polyhedral theory required for the present
chapter.

A set PCR" is called a polyhedron if there exist a matrix A and a column
vector b such that

P={x|Ax<b}. 1)

If (2.1) holds, we say that Ax <b determines P. A set P CR" is called a polytope
if there exist x;,...,x, in R" such that P=conv{x,,...,x,}. The following
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theorem is intuitively clear, but is not trivial to prove, and is usually attributed to
Minkowski (1896), Steinitz (1916), and Weyl (1935).

Finite Basis Theorem for Polytopes 2.2. A set P is a polytope if and only if P is a
bounded polyhedron.

Motzkin, in 1936, extended this to:

Decomposition Theorem for Polyhedra 2.3. P CR" is a polyhedron if and only if
there exist x|, ..., X, Yis...,Y, ER" such that

P={Ax, +- - +Ax,+uy + Ty Ay s A, By e e i =05
A+t A =10

Now let P = {x | Ax < b} be a nonempty polyhedron, where A has order m X n.
If c € R” with ¢ % 0 and & = max{c"x |x € P}, then the set {x|c'x =8} is called a
supporting hyperplane of P. A subset F of P is called a face of P if F=P or if
F=PNH for some supporting hyperplane H of P. Clearly, a face of P is a
polyhedron again. It can be shown that for any face F of P there exists a
subsystem A'x <b' of Ax<b such that F={x& P|A'x=b"}. Hence P has only
finitely many faces. They are ordered by inclusion. Minimal faces are the faces
minimal with respect to inclusion. The following theorem is due to Hoffman and
Kruskal (1956).

Theorem 2.4. A set F is a minimal face of P if and only if §* F C P and
F={x|Ax=b"}

for some subsystem A'x <b' of Ax<b.

All minimal faces have the same dimension, viz. n-rank(A). If this is 0, minimal
faces correspond to vertices: a vertex of P is an element of P which is not a
convex combination of two other elements of P. Only if rank(A) = n, does P have
vertices, and then those vertices are exactly the minimal faces. Hence:

Theorem 2.5. Vector z in P is a vertex of P if and only if A'z=10" for some
subsystem A'x <b' of Ax <b, with A’ nonsingular of order n.

The matrix A’ (or subsystem A'x<b') is sometimes called a basis for z.
Generally, such a basis is not unique. P is called pointed if it has vertices. A
polytope is always pointed, and is the convex hull of its vertices.

Two vertices x and y of P are adjacent if conv{x, y} is a face of P. It can be
shown that if P is a polytope, then two vertices x and y are adjacent if and only if
the vector (x + y) is not a convex combination of other vertices of P. Moreover,
one can show:
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Theorem 2.6. Vertices z' and z" of the polyhedron P are adjacent if and only if z’
and z" have bases A'x<b' and A"x <b", respectively, so that they have exactly
n — 1 constraints in common.

The polyhedron P gives rise to a graph, whose nodes are the vertices of P, two
of them being adjacent in the graph if and only if they are adjacent on P. The
diameter of P is the diameter of this graph. The following conjecture is due to W.
M. Hirsch (cf. Dantzig 1963).

Hirsch’s Conjecture 2.7. A polytope in R" determined by m inequalities has
diameter at most m — n.

This conjecture is related to the number of iterations in the simplex method
(see section 3). See also Klee and Walkup (1967) and Larman (1970). [The
Hirsch conjecture was proved by Naddef (1989) for polytopes all of whose
vertices are {0, 1} — vectors.]

A facet of P is an inclusion-wise maximal face F of P with F'# P. A face F of P
is a facet if and only if dim(F)=dim(P) — 1. An inequality ¢'x <& is called a
facet-inducing inequality if PC {x|c"x <8} and PN {x|c"x =8} is a facet of P.

Suppose Ax <b is an irredundant (or minimal) system determining P, i.e., no
inequality in Ax <b is implied by the other. Let A"x<b" be those inequalities
a'x<p from Ax<b for which a"z<p for at least one z in P. Then each
inequality in A"x<b" is a facet-inducing inequality. Moreover, this defines a
one-to-one relation between facets and inequalities in A"x<b". If P is full-
dimensional, then the irredundant system Ax < b is unique up to multiplication of
inequalities by positive scalars. The following characterization holds.

Theorem 2.8. If P = {x| Ax <b} is full-dimensional, then Ax <b is irredundant if
and only if for each pair a x <b, and a,Tx <b, of constraints from Ax<b thereisa
vector x' in P satisfying a;x' = b, and afx” <b,.

The polyhedron P is called rational if we can take A and b in (2.1) rational-
valued (and hence we can take them integer-valued). P is rational if and only if
the vectors x,,...,x, and y,,...,y, in Theorem 2.3 can be taken to be
rational. P is called integral if we can take x,,...,x,,and y,, ..., y, in Theorem
2.3 integer-valued. Hence P is integral if and only if P is the convex hull of the
integer vectors in P or, equivalently, if and only if every minimal face of P
contains integer vectors.

3. Background information on linear programming

Linear programming, abbreviated by LP, studies the problem of maximizing or
minimizing a linear function ¢'x over a polyhedron P. Examples of such a
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problem are:
(i) max{c'x|Ax<b},
(i) max{c'x|x=0, Ax<b},
(iti) max{c'x|x=0, Ax=b},

(ivy min{c'x|x=0, Ax=b}.

(3.1)

It can be shown, for each of the problems (i)-(iv), that if the set involved is a
polyhedron with vertices [for (ii)-(iv) this follows if it is nonempty], and if the
optimum value is finite, then it is attained by a vertex of the polyhedron.

Each of the optima (3.1) is equal to the optimum value in some other LP
problem, called the dual problem.

Duality Theorem of Linear Programming 3.2. Let A be an m X n matrix and let
bER™ and c €R". Then
(i) max{c'x|Ax<b} =min{y"b|y=0,y'A=c"};
(i) max{c'x|x=0, Ax<b}=min{y'b|y=0,y"A=c"};
(iii) max{c'x|x=0, Ax=b} =min{y"b |y A=c"};

(iv) min{c"x|x=0, Ax=b} =max{y'b|y=0,y ' A<c"};

(3.3)

provided that these sets are nonempty.
It is not difficult to derive this from:

Farkas’s Lemma 3.4. Let A be an m X n matrix and let b € R™. Then Ax = b has
a solution x =0 if and only if y'b =0 holds for each vector y € R"™ with y* A=0.

The principle of complementary slackness says: let x and y satisfy Ax=<b,
y=0, y'A=c" then x and y are optimum solutions in Theorem 3.2(i) if and only
if y,=0o0ra'x=>b, foreachi=1,...,m (where a, x = b, denotes the ith line in
the system Ax = b). Similar statements hold for Theorem 3.2(ii)—(iv).

We now describe briefly three of the methods for solving LP problems. The first
two methods, the famous simplex method and the primal-dual method, can be
considered also, when applied to combinatorial problems, as a guideline to
deriving a ‘“‘combinatorial” algorithm from a polyhedral characterization. The
third method, the ellipsoid method, is more of theoretical value: it is a tool
sometimes used to derive the polynomial-time solvability of a combinatorial
problem.

3.1. The simplex method

The simplex method, due to Dantzig (1951a), is the method used most often for
linear programming. Let A € R™*", b €R™, and ¢ ER". Suppose we wish to
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solve max{c"x| Ax <b}, where the polyhedron P:= {x| Ax <b} is a polyhedron
with vertices, i.e., rank(A) = n.

The idea of the simplex method is to make a trip, going from a vertex to a
better adjacent vertex, until an optimal vertex is reached. By Theorem 2.5,
vertices can be described by bases, while by Theorem 2.6 adjacency can be
described by bases differing in exactly one constraint. Thus the process can be
described by a series

Axsb,,Ax<b, ,Ax<b,, ... (3.5)

of bases, where each x, := A, 'b, is a vertex of P, where Ay x <b,,, differs by
one constraint from Akx<bA, and where ¢'x,,, =¢'x,.

The series can be found as follows. Suppose A,x <b, has been found. If
¢"A;' =0, then x, is an optimal solution of max {ch | Ax<b}, since for each X
satisfymg Ax<b one has A, x<b, and hence c'x=(c"A; YA x<(c"A; )b, =
c'x,

If ¢"A;' #0, choose an index i so that (c"A;'), <0, and let z:=—A,e,
(where e; denotes the ith unit basis vector in R"). Note that for A=0, x, + Az
traverses an edge or ray of P (i.e., face of dimension 1), or it is outside of P for
all A>0. Moreover, ¢'z=—c"A; 'e,;>0. Now if Az<0, then x, + Az € P for all
A =0, whence max{c'x| Ax<b} = If Az%0, let A, be the largest A such that
X, + Az belongs to P, i.e.,

bj—a X,
Ay i= min|—~—"—
a;z

j=1,...,m,aiTz>0}. (3.6)

Choose an index j attaming this minimum. Replacing the ith inequality in
Ax <b, by inequality g; x<b then gives us the next system A, x \b,\+1

Note that Xp1 -—xk+)\0z 1mplymg that 1f X, ., #x, then x> cTx,.
Clearly, the above process stops if ¢'x,,,>c'x, for each k (since P has only
finitely many vertices). This is the case if each vertex has exactly one basis — the
nondegenerate case. However, in general it can happen that x, ., = x, for certain
k. Several “pivot selection rules”, prescribing the choice of i and j above, have
been found which could be proved to yield termination of the simplex method.
No one of these rules could be proved to give a polynomial-time method — in fact,
most of them could be shown to require an exponential number of iterations in
the worst case.

The number of iterations in the simplex method is related to the diameter of
the underlying polyhedron P. Suppose P is a polytope. If there is a pivot selection
rule such that for each ¢ €R" the problem max{c'x|Ax<b} can be solved
within ¢ iterations of the simplex method (starting with an arbitrary first basis
Ay x<b, corresponding to a vertex), then clearly P has diameter at most t.
However, as Padberg and Rao (1974) showed, the ‘‘traveling-salesman poly-
topes” (see section 10) form a class of polytopes of diameter at most 2, while
maximizing a linear function over these polytopes is NP-complete.

A main problem seems that we do not have a better criterion for adjacency
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than Theorem 2.6. Note that a vertex of P can be adjacent to an exponential
number of vertices (in the sizes of A and b), whereas for any basis A’ there are at
most n(m — n) bases differing from A’ in exactly one row. In the degenerate case,
there can be several bases corresponding to one and the same vertex. Just this
phenomenon shows up frequently in polytopes occurring in combinatorial
optimization, and one of the main objectives is to find pivoting rules preventing us

going through many bases corresponding to the same vertex (cf. Cunningham
1979).

3.2. Primal-dual method

As a generalization of similar methods for network flow and transportation
problems, Dantzig et al. (1956) designed the “‘primal-dual method” for LP. The
general idea is as follows. Starting with a dual feasible solution y, the method
searches for a primal feasible solution x satisfying the complementary slackness
condition with respect to y. If such a primal feasible solution is found, x and y
form a pair of optimal (primal and dual) solutions. If no such primal solution is
found, the method prescribes a modification of y, after which we start anew.

The problem now is how to find a primal feasible solution x satisfying the
complementary slackness condition, and how to modify the dual solution y if no
such primal solution is found. For general LP problems this problem can be seen
to amount to another LP problem, generally simpler than the original LP
problem. To solve the simpler problem we could use any LP method, e.g., the
simplex method. In many combinatorial applications, however, this simpler LP
problem is a simpler combinatorial optimization problem, for which direct
methods are available (see Papadimitriou and Steiglitz 1982). Thus, if we can
describe a combinatorial optimization problem as a linear program, the primal-
dual method gives us a scheme for reducing one combinatorial problem to an
easier combinatorial problem.

We shall now describe the primal-dual method more precisely. Suppose we
wish to solve the LP problem.

min{c'x |x=0, Ax=b}, (3.7)

where A is an m X n matrix, with columns a,,...,a,, b ER”, and c ER". The
dual problem is

max{y'b|y'A<c"}. (3.8)

The primal-dual method consists of repeating the following primal-dual itera-
tion. Suppose we have a feasible solution y, for problem (3.8). Let A" be the
submatrix of A consisting of those columns a; of A for which ygaj =¢;. To find a
feasible primal solution for which the complementary slackness condition holds,
solve the restricted linear program

min{A|x’, A=0; A'x'+bA=b} =max{yb|y 4’ <0, y'b<1}. (3.9)
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If the optimum value is 0, let x(,, A be an optimum solution for the minimum. So
x,=0, A'x;=b, and A=0. Hence by adding zero-components, we obtai: a
vector x,=0 such that Ax,=b and (x,);=0 if yOTaj<c].. By complementary
slackness, it follows that x, and y, are optimum solutions for problems (3.7) and
(3.8). If the optimum value in problem (3.9) is positive, it is 1. Let u be an
optimum solution for the maximum. Let 6 be the largest real number satisfying

(yo +Ou)"A<c". (3.10)

(Note that 6 >0.) Reset y,:=y, + 0u, and start the iteration anew.

This describes the primal-dual method. It reduces problem (3.7) to (3.9),
which is often an easier problem, consisting only of testing feasibility of: x' =0,
A'x"'=b.

The primal-dual method can equally be considered as a gradient method.
Suppose we wish to solve problem (3.8), and we have a feasible solution y,. This
y, is not optimal if and only if we can find a vector u such that u'» >0 and u is a
feasible direction in y, [i.e., (y, + 0u)' A<c' for some 6 >0]. If we let A’ consist
of those columns of A in which y;A<c' has equality, then u is a feasible
direction if and only if «" A’ <0. So u can be found by solving the right-hand side
of problem (3.9).

Application 3.11 (Maximum flow). Let D = (V, A) be a directed graph, let r,
s€V, and let a “capacity” function c: A—Q, be given. The maximum flow
problem is to find the maximum amount of flow from r to s, subject to c:

maximize ), x(a) — > x(a) (3.12)

a€8 *(r) agsd " (r)

subject to > x(a) — > x(@)=0, veV, v#r,s,

a€d *(v) 4ES " (v)

O0<x(@a)<c(a), a€A.

If we have a feasible solution x,, we have to find a feasible direction in x,,, i.e., a
function u: A— R satisfying

> u(a) — > u(@)>0,

a€d t(r) aed " (r)
2 u(a) — 2 u@@ =0, veV, v#r,s,
a€8 T(v) a€s " (v)

u@)=0, a€A, x,(a)=0, (3-13)

u@) <0, a€A, xy(a)=c(a).

One easily checks that this problem is equivalent to the problem of finding an
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undirected path from r to s in D = (V, A) so that for any arc a in the path,

if x,(a) =0, then arc a is traversed forward,
if x,(a) = c(a), then arc a is traversed backward, 3.14)

if 0<x,(a) <c(a), then arc a is traversed forward or backward.

If we have found such a path, we find u as in (3.13) (by taking u(a) = +1 or —1 if
a occurs in the path forward or backward, respectively, and u(a) =0 if a does not
occur in the path). Taking the highest 6 for which x, + 6u is feasible in problem
(3.12) gives us the next feasible solution. The path is called a flow-augmenting
path, since the new solution has a higher objective value than the old. Iterating
this process we finally get an optimum flow. This is exactly Ford and Fulkerson’s
algorithm (1957) for finding a maximum flow, which is therefore an example of a
primal-dual method. [Dinits (1970) and Edmonds and Karp (1972) showed that a
version of this algorithm is a polynomial-time method.]

3.3. The ellipsoid method

The ellipsoid method, developed by Shor (1970a,b, 1977) and Yudin and
Nemirovskii (1976/1977, 1977) for nonlinear programming, was shown by
Khachiyan (1979) to solve linear programming in polynomial time. Very roughly
speaking, it works as follows.

Suppose we wish to solve the LP problem

max{c'x| Ax<b}, (3.15)

where A€Q™", b€Q", and c€Q". Let us assume that the polyhedron
P:={x| Ax<b} is bounded. Then it is not difficult to calculate a number R such
that PC{x€R"|||x|]|<R}. We construct a sequence of ellipsoids E,, E,,
E,, ..., each containing the optimum solutions of problem (3.15). First, E,;:=
{x €R"|||x|]| <R}. Suppose ellipsoid E, has been found. Let z be its center.

If Az <b does not hold, let a,x <b, be an inequality in Ax <b violated by z.
Next let E,,, be the ellipsoid of smallest volume satisfying E,,, D E, N {x lagx <
ayz}. If Az<b does hold, let E,, be the ellipsoid of smallest volume satisfying
E, DEN{x|c'x=c"z).

One can prove that these ellipsoids of smallest volume are unique, and that the
parameters determining E,,, can be expressed straightforwardly in those de-
termining £, and in a,, respectively ¢. Moreover, vol(E,, ) <e """ vol(E,).
Hence the volumes of the successive ellipsoids decrease exponentially fast. Since
the optimum solutions of problem (3.15) belong to each E,, we may hope that the
centers of the ellipsoids converge to an optimum solution of problem (3.15).

To make this description more precise, an important problem to be solved is
that ellipsoids with very small volume can still have a large diameter [so that the
centers of the ellipsoids can remain far from any optimum solution of problem
(3.15)]. Another, technical, problem is that the unique smallest elipsoid is usually
determined by irrational parameters, so that if we work in rational arithmetic we
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must allow approximations of the successive ellipsoids. These problems can be
overcome, and a polynomially bounded running time can be proved.

It was observed by Grotschel et al. (1981), Karp and Papadimitriou (1982) and
Padberg and Rao (1980) that in applying the ellipsoid method, it is not necessary
that the system Ax < b be explicitly given. It suffices to have a ‘“‘subroutine” to
decide whether or not a given vector z belongs to the feasible region of problem
(3.15), and to find a separating hyperplane in case z is not feasible. This is
especially useful for linear programs coming from combinatorial optimization
problems, where the number of inequalities can be exponentially large (in the size
of the underlying data-structure), but can yet be tested in polynomial time.

This leads to the following result (Grotschel et al. 1981). Suppose we are given,
for each graph G = (V, E), a collection %, of subsets of E. For example,

(i) % is the collection of matchings in G;
(ii) &; is the collection of spanning trees in G; (3.16)
(iii)) %, is the collection of Hamiltonian circuits in G.

With any class (% |G graph), we can associate the following problem.

Optimization Problem 3.17. Given a graph G =(V, E) and c €Q°”, find FE %,
maximizing ., C,.

So if (%;| G graph) is as in (i), (ii), and (iii) above, Problem 3.17 amounts to
the problems of finding a maximum weighted matching, a maximum weighted
spanning tree, and a maximum weighted Hamiltonian circuit (the traveling
salesman problem), respectively.

The optimization problem is called solvable in polynomial time, or polynomially
solvable, if it is solvable by an algorithm whose running time is bounded by a
polynomial in the input size of Problem 3.17, which is |V| + |E| + size(c). Here
size(c) := X.cr size(c,), where the size of a rational number p/q is log,((|p| +
1) +1log,(|q). So size(c) is about the space needed to specify ¢ in binary notation.

Define also the following problem for any fixed class (%, |G graph).

Separation Problem 3.18. Given a graph G=(V,E) and x € Q", determine
whether or not x belongs to conv{y' | FE %.}, and if not, find a separating
hyperplane.

Theorem 3.19. For any fixed class (%, |G graph), the Optimization Problem 3.17
is polynomially solvable if and only if the Separation Problem 3.18 is polynomially
solvable.

The theorem implies that with respect to the question of polynomial-time
solvability, the polyhedral combinatorics approach described in section 1 (i.e.,
studying the convex hull) is, implicitly or explicitly, unavoidable: a combinatorial
optimization problem is polynomially solvable if and only if the corresponding
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convex hulls can be described decently, in the sense of the polynomial-time
solvability of the separation problem. This can be stated also in the negative: if a
combinatorial optimization problem is not polynomially solvable (perhaps the
traveling salesman problem), then the corresponding polytopes have no such
decent description.

The ellipsoid method does not give a practical method, so Theorem 3.19 is
more of theoretical value. In some cases, with Theorem 3.19 the polynomial
solvability of a combinatorial optimization problem was proved, and that then
formed a motivation for finding a practical polynomial-time algorithm for the
problem.

One drawback of the ellipsoid method is that the number of ellipsoids to be
evaluated depends on the size of the objective vector c. This does not conflict with
the definition of polynomial solvability, but is not very attractive in practice. It
would be preferable for the size of ¢ only to influence the sizes of the numbers
occurring when we perform the algorithm, but not the number of arithmetic
operations to be performed. An algorithm for Optimization Problem 3.17 is called
strongly polynomial if it consists of a number of arithmetic operations, bounded
by a polynomial in |V|+ |E|, on numbers of size bounded by a polynomial in
[V| + |E| + size(c). Such an algorithm is obviously polynomial-time.

Interestingly, Frank and Tardos (1985) showed, with the help of the “basis
reduction method” (Lenstra et al. 1982):

Theorem 3.20. For any fixed class (¥ | G graph), if there exists a polynomial-time
algorithm for Optimization Problem 3.17, then there exists a strongly polynomial
algorithm for it.

At the moment of writing, it is not yet clear whether this result leads to
practical algorithms.

Finally we note that it is not necessary to restrict % to collections of subsets of
the edge set E. For instance, similar results hold if we consider collections % of
subsets of the vertex set V. Moreover, we can consider classes (%;|G € 9),
where ¥ is a subcollection of the set of all graphs. Similarly, we can consider
classes (%, | D directed graph), (%, |H hypergraph), (%, |M matroid), and so
on.

More on the ellipsoid method can be found in Grotschel et al. (1988).

We finally mention the method of Karmarkar (1984) for linear programming;
this appears to be competitive with the simplex method, but its impact on
polyhedral combinatorics is not yet clear at the moment of writing.

4. Total unimodularity

A matrix is called rotally unimodular if each subdeterminant belongs to {0, +1,
—1}. In particular, each entry of a totally unimodular matrix belongs to {0, +1,
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—1}. The importance of total unimodularity for polyhedral combinatorics comes
from the following theorem (Hoffman and Kruskal 1956).

Theorem 4.1. Let A be a totally unimodular m X n matrix and let b € Z™. Then
the polyhedron P:= {x|Ax<b} is integral.

Proof. Let F={x|A'x=b'} be a minimal face of P, where A'x<b' is a
subsystem of Ax <b. Without loss of generality, A'=[A, A,], with A, nonsingu-
lar. Then A" is an integral matrix (as det A, = =1), and hence the vector

(1)

is an integral vector in F. [J

In fact, Hoffman and Kruskal showed that an integral m X n matrix A is totally
unimodular if and only if for each b &Z™, each vertex of the polyhedron
{x ER"|x=0, Ax<b} is integral.

We mention a strengthening of Theorem 4.1 due to Baum and Trotter (1977).
A polyhedron P in R" is said to have the integer decomposition property if for
each k €N and for each integral vector z in kP (={kx|x & P}), there exist
integral vectors x,,...,x, in P so that z=x, + - -+ x,. It is not difficult to see
that each polyhedron with the integer decomposition property is integral.

Theorem 4.3. Let A be a totally unimodular m X n matrix and let b € Z™. Then
the polyhedron P:= {x|Ax<b} has the integer decomposition property.

Proof. Let k €N and z €EkP N Z". By induction on k we show that z=x, +--- +
x, for integral vectors x,,...,x, in P. By Theorem 4.1, there exists an integral
vector, say x,, in the polyhedron {x| Ax <b, —Ax < (k — 1)b — Az} [since (i) the
constraint matrix [ 4,] is totally unimodular, (ii) the right-hand-side vector
(¢ - 1}» - 4-) is integral, and (iii) the polyhedron is nonempty, as it contains k™'z).
Then z —x, € (k — 1)P, whence by induction z —x, =x, + - - - +x,_, for integral
vectors x,,...,x,_;in P. 0O

The following theorem collects together several other characterizations of total
unimodularity.

Theorem 4.4. Let A be a matrix with entries 0, +1, and —1. Then the following
characterizations are equivalent:

(i) A is totally unimodular, i.e., each square submatrix of A has determinant in
{0, +1, -1};

(ii) each collection of columns of A can be split into two parts so that the sum of
the columns in one part, minus the sum of the columns in the other part, is a vector
with entries 0, +1, and —1 only;
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(iii) each nonsingular submatrix of A has a row with an odd number of nonzero
components;
(iv) the sum of the entries in any square submatrix of A with even row and
column sums, is divisible by four;
(v) no square submatrix of A has determinant +2 or —2.

Characterization (ii) is due to Ghouila-Houri (1962), (iii) and (iv) to Camion
(1965), and (v) to R. E. Gomory (cf. Camion 1965).

There are several further characterizations of total unimodularity. By far the
deepest is due to Seymour (1980) (see chapter 10). For an efficient algorithm to
test total unimodularity, see Truemper (1982). See also Truemper (1990).

4.1. Application: bipartite graphs

It is not difficult to see that the V' X E incidence matrix A of a bipartite graph
G =(V,E) is totally unimodular: any square submatrix B of A either has a
column with at most one 1 (in which case det B € {0, =1} by induction), or has
two 1’s in each column (in which case det B =0 by the bipartiteness of G). In
fact, the incidence matrix of a graph G is totally unimodular if and only if G is
bipartite.

The total unimodularity of the incidence matrix of a bipartite graph has several
consequences, some of which we will describe now.

Definition 4.5. The matching polytope of a graph G = (V, E) is the polytope
conv{x" | M matching} in R®. Theorem 4.1 directly implies that the matching
polytope of a bipartite graph G is equal to the set of all vectors x in R” satisfying

(i) x,=0, e€E,
() XDx,<1, vev

e3v

(4.6)

[since the polyhedron determined by (4.6) is integral].

Clearly, the matching polytope of G = (V, E) has dimension |E|. Each inequali-
ty in (4.6) is facet-determining, except if G has a vertex of degree at most 1. It is
not difficult to see that the incidence vectors ™, x* of two matchings M, M' are
adjacent on the matching polytope iff M AM’ is a path or circuit, where A
denotes symmetric difference. Hence, the matching polytope of G has diameter at
most »(G). (This paragraph holds also for nonbipartite graphs.)

The above characterization of the matching polytope for bipartite graphs
implies that for any bipartite graph G =(V, E) and any “weight” function
c:E—-R,:

maximum weight of a matching = max{ch |x=0, Ax<1}, 4.7)

where A is the incidence matrix of A, 1 denotes an all-one column vector, and
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where the weight of a set is the sum of the weights of its elements. In particular,
»(G)=max{1"x|x=0, Ax<1} . (4.8)

Definition 4.9. The node-cover polytope of a graph G = (V, E) is the polytope
conv{x"|N node <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>